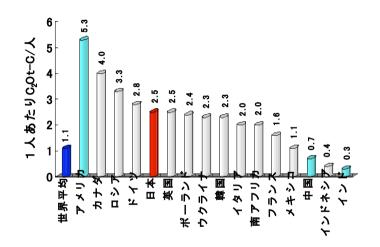
JFMA 2009

持続可能な都市・建築をめざして

神戸芸術工科大学 小玉祐一郎

Sustainability 地球の温暖化

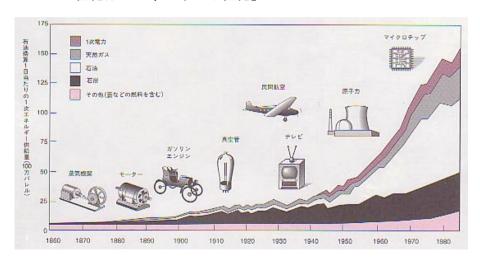
持続可能ということ


「持続可能な社会」レスター・ブラウン(1981年)

「この地球の環境は祖先からの遺産ではなく未来の子 供たちからの借り物だ」

どのように住み続けられるか

- 1)時間・世代を超えた持続可能性の問題
- 2) 地理的空間を越えた持続可能性



各国の1人当たりCO2排出量(1995 年)

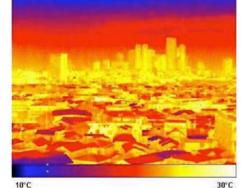
出所:オークリッジ国立研究所(米国)

20世紀は「エネルギーの世紀」

20世紀は「エネルギーの世紀」 パワフルな技術によるブレークスルー ーエネルギーによるカずくの解決

「現代建築はエネルギーがつくった」

- ーアメリカの建築は配管工がつくった(A.ロース) 有り余るエネルギーを活用した空調技術の開発
- ー「エアコンディショニングの悪夢」(H.ミラー)


居住空間の拡大

苛酷な自然環境の克服 寒冷地、砂漠ーー極地 宇宙空間ー宇宙船(カプセル住宅) 都市空間ー最も苛酷な居住環境条件

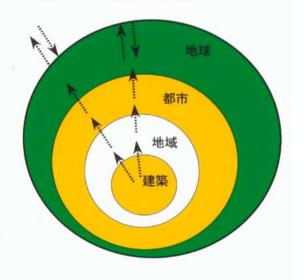
建築が地球環境に与える影響

地球温暖化 ヒートアイランド 生態系の変化

どのように防ぐか mitigation どのように対応するか: adaptation

生態学 (エコロジー生物と環境との関係学) の教訓

環境の維持=安定的なエコシステム


- 1) エネルギー
- 2)物質の循環
- 3)生物多様性

生態学 ECOLOGY-OIKO Σ +LOGOS V S 経済学 ECONOMY-OIKO Σ +NEMEIN

対立から調整へ

RESOURCE LIMIT から SINK LIMIT へ

熱的:開放系 物質的:閉鎖系

入れこの構造

建築物のライフサイクルアナリシ ス

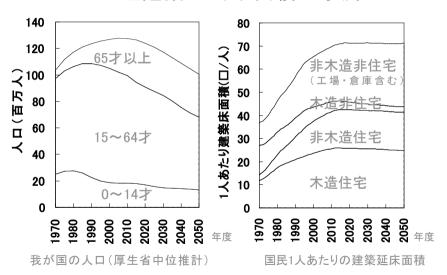
ライフサイクルアセ

スメント

LCA

LCE(ライフサイクルエネルギー) LCCO2(ライスサイクル炭酸ガス) LCC(ライフサイクルコスト)

FM


地球というファシリティの管理

日本の炭酸ガス排出量

1995年産業連関表等を利用した推計値(伊香賀推計)

人口と建築ストック画積の予測

環境負荷低減戦略

エネルギー

1) 建物の使用に伴うエネルギー消費を減らすこと。

物質循環

- 2) 建物の物理的、社会的耐用年数を伸ばすこと。
- 3)建設に際して環境負荷の小さい材料を選択し、 かつ再利用、再生使用すること。

効率的な物質循環

手法の多様化

- 〇建物の耐久性、長寿命
- ○歴史/文化性の蓄積
- ×機能の陳腐化

- ○資源の供給にあわせた消費
- ×スクラップアンドビルド
- 〇容易な機能の更新

SI スケルトンーインフイル **長寿命化**

ライフサイクル設計 フレキシブル設計

地場産材の活用 一保全の持続可能な関係

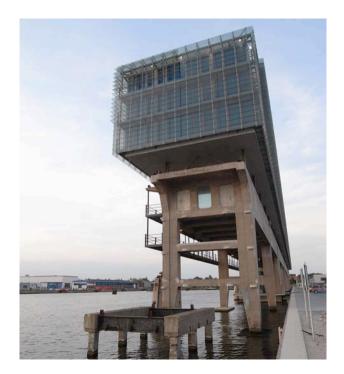
近くの山の木で家を造る「地産地消」 江戸のライフスタイル メインテナンスの重要性

建築材料とエネルギー消費 製造エネルギー原単位

セメント 225 kg-c/ton 鉄 515 アルミ 616 板ガラス 404

木材(製 材) 8(炭素固定量500) 木材(合 板)49(炭素固定量496)

改修/再生


コンバージョン:用途変更

耐震改修

安全性・快適性・利便性の向上

野津町交流センター

ルシアン・クロール 団地再生

木造住宅省工ネ改修

住宅ストック4000万 戸 新築120万戸

「エネルギー」はエコロジーの鍵

省エネルギー

手法の多様化

エネルギー志向

環境志向

アクティブ

人工環境技術の洗練

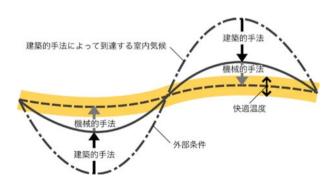
〇いつでも、どこでも

×均質·無味乾燥

△集中型エネルギーシステム

パッシブ

気候特性に合ったデザイン


〇自然の変化を楽しむ

×手間がかかる

△分散型エネルギーシステム

住宅の環境計画

- ●建築的工夫 (パッシブ)
- ●設備的工夫(アクティブ)

室内気候制御の歴史

1) 第1世代 伝統的な建築的工夫、バナキュラー建築

2) 第2世代 エネルギー大量供給の時代(1960-) 建築設備の普及 エネルギー危機、地球環境問題 建築設備の洗練/高効率化、代替エネルギー

3)第3世代 地球環境負荷の低減建築的工夫の再認識 (パッシブ)パッシブ+アクティブ

第1世代の環境装置 ふたつの原型」

選択的

遮断的

J.M.Fitch"American Buildings"

第2世代の環境装置

1965年の未来住居 Environmental Bubble F.Dallegret

84 François Dallegret: environmental bubble (illustrating the article 'A Home is not a House' by Reyner Banham) 1965

ゼロエネルギー住宅

閉鎖系 高効率設備システム

高断熱・高気密

クリーンエネルギー

日本の住宅はどこをめざすのか? RESPONSIVE:環境に対してどのように開くか

- 1) 負の循環から脱出するために
- 2) 身体的な快適さを取り戻すために

(一定の快適さ) 閉じた系で考える

省エネ

開いた系で考える (変化のある快適さ)

 External walls are exeptionally well insulated and airtight. A glazed porch protects the entrance door.

無暖房住宅と未来住宅

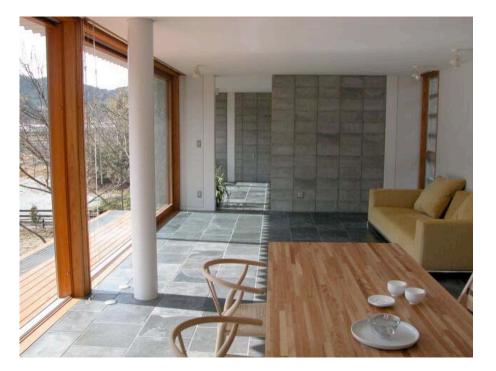
高気密高断熱の一方で 開放感を渇望する北方住宅

温暖地の選択的制御 開いた系

聴竹居 藤井厚二 「日本の住宅」1928 "建築計画原論事始"

現代の技術で「聴竹居」を考える・・・パッシブデザイン

地域特性を生かす 環境と交感する **responsive**



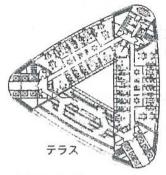
建築学会作品選奨 グッドデザイン賞 建築家協会環境建築賞

アプローチからのスケッチ

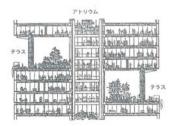
進化する建築

GREEN BUILDING SUSTAINABLE BUILDING KYOTO BUILDING

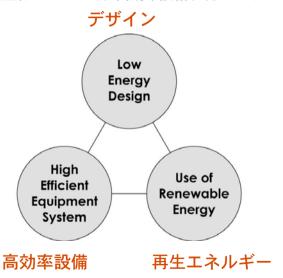

"COOLING BUILDING IN WARMING CLIMATE"

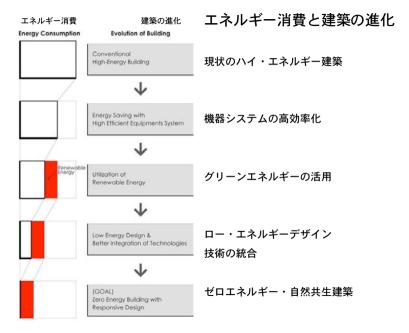

"呼吸する"超高層

「コメルツバンク」


 $N \cdot フォスター <math>\angle 1992 \cdot FRANKFURT$ なぜ、窓を開けるのか? なぜ、自然の光なのか、風なのか?

- 1)省エネ
- 2)知的作業空間の創造 オフイス空間のめざましい変革

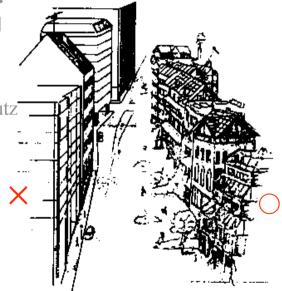

基準階平面図

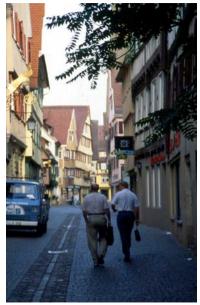


「コメルツバンク」 ノーマン·フォスター/1992年·ドイツ

持続可能な建築: デザイン、高効率設備、再生エネルギー技術の統合

香港一コンパクトシティ




エコポリス

メトロポリス批判 Alternative Tech.

1 9 8 5 T.Lutz

チュービンゲン

課題1 アメニティの再考

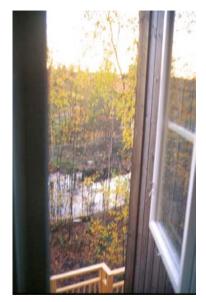
Civil Amenity Act,UK
"The right thing in the right place"
住居、暖かさ、光、清浄な空気、静謐さ
「住み心地のよさ」「快適な居住環境」

課題2 快適追求のジレンマを打破できるか

「室内の快適さの追求が外の環境を汚染する」

「環境のポテンシャル」をあげるか?

ビレッジホーム デイビスシティ・カリフォルニア


郊外のエコビレッジ カールシュタット・スエーデン

中層から低層へ 自然との共生 チュービンゲン・ドイツ

都心のエコビレッジ ストックホルム

海辺の自然共生都市 マルメ・スエーデン

ゼロエネルギー団地 ロンドン

01 - A flat, brownfield site: Close to bus routes and a main line railway station

02 - Site sold with outline planning permission for the following residential use : 64 homes @ 3.5 hab rooms per home proposed on a 0.64 ha plot. Three storey housing

03 - ZEDfactory team propose an additional 1,560m² net workspace on the same 0.64 ha plot. Density is 203 workspaces / ha @ 12m² / workspace, with car pool shared with housing.

04 - Integrated live / work community: 100 homes and 200 workspaces / har With a shared car people and sygaphenessed of the propage roofs enabling the densification of the propagation of the propagation

環境ポテンシャルを上げる戦略 クーリング ダウン

風の道:熱・汚染物質の速やかな拡散

:森の新鮮空気の供給

:海風・川風の活用

クーリングスポット : 都市緑化・建物緑化

:川の再生(ソウル-清蹊川)

排熱の処理 : 削減

(緊急避難的活用) :域外へ捨てる

:川・海・下水へ捨てる

POSITIVE SPIRAL

NEXT 21

立体緑化

クールスポットの形成

環境ポテンシャルの改善

窓を開ける

_・ 脱エネルギー

省エネルギー・環境負荷低減は 持続可能な建築の必要条件

十分条件は何か

環境のポテンシャルを上げることができるか

どのような住居に住みたいか どのような街に住みたいか われわれは明日どこに住むか

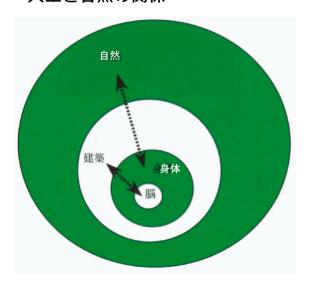
ドラえもん型

サツキとメイ型

21世紀の課題

その1 身体性

IT,BTとの関係


(脱物質・バーチャルリアリティとの相克)

その2 地域性 気候風土・記憶の蓄積

グローバライゼーションとの関係

(普遍性・標準化とのあつれき)

身体性一 人工と自然の関係

